DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY QUESTION BANK

SUBJECT : MA3351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
 SEMESTER / YEAR: III / II BME

UNIT I - PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations - Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange's linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

PART- A			
Q.No.	Question	Bloom's Taxonomy Level	Domain
1.	Form a partial differential equation by eliminating the arbitrary constants ' a ' and ' b ' from $z=a x^{2}+b y^{2}$. Solution $p=2 a x, q=2 b y$ $a=p / 2 x, b=q / 2 y$ therefore PDE is $2 z=p x+q y$.	BTL-4	Analyzing
2.	Eliminate the arbitrary function from $z=f(y / x)$ and form the partial differential equation Solution: $p x+q y=0$	BTL -4	Analyzing
3.	Form the PDE from $(x-a)^{2}+(y-b)^{2}+z^{2}=r^{2}$. Solution Differentiating the given equation w.r.t $\mathrm{x} \quad \& \mathrm{y}$, $z^{2}\left[p^{2}+q^{2}+1\right]=r^{2}$.	BTL -3	Applying
4.	Find the complete integral of $\mathrm{p}+\mathrm{q}=\mathrm{pq}$. Solution $\mathrm{p}=\mathrm{a}, \mathrm{q}=\mathrm{b}$ therefore $\mathrm{z}=a x+\frac{a}{a-1} y+c$.	BTL- 4	Analyzing
5.	Form the partial differential equation by eliminating the arbitrary constants a, b from the relation $\log (a z 1) x$ ay b. Solution: $\begin{aligned} & \log (a z-1)=x+a y+b \\ & \text { Diff. p.w.r.t } x \& y, \frac{a p}{a z-1}=1-e q n 1 \quad \& \frac{a q}{a z-1}=a-e q n 2 \\ & \frac{E q n 1}{E q n 2} \Rightarrow q=a p \operatorname{Sub} \text { in } a(z-p)=1 \Rightarrow q(z-p)=p \end{aligned}$	BTL-4	Analyzing
6.	Form the PDE by eliminating the arbitrary constants a, b from the relation $z=a x^{3}+b y^{2}$. Solution: Differentiate w.r.t x and y $p=3 a x^{2}, q=3 b y^{2}$ therefore $3 z=p x+q y$.	BTL-4	Analyzing
7.	Form a p.d.e. by eliminating the arbitrary constants from $\mathrm{z}=$ $\left(2 x^{2}+a\right)(3 y-b)$. Solution: $\begin{aligned} p= & 4 x(3 y-b), q=3\left(2 x^{2}+a\right) \\ & 3 y-b=p / 4 x \\ & \left(2 x^{2}+a\right)=q / 3 . \text { Therefore } 12 x z=p q . \end{aligned}$	BTL-4	Analyzing
8.	Form the partial differential equation by eliminating arbitrary function ϕ from $\phi\left(x^{2}+y^{2}, z-x y\right) 0$ Solution: $u=x^{2}+y^{2}$ and $v=z-x y$. Then $=2 x, u_{y}=2 y ; v_{x}=p-y$;	BTL-4	Analyzing

	$\mathrm{v}_{\mathrm{y}}=\mathrm{q}-\mathrm{x} \cdot\left\|\begin{array}{cc} \mathrm{u}_{\mathrm{x}} & u_{y} \\ \mathrm{v}_{\mathrm{x}} & \mathrm{v}_{\mathrm{x}} \end{array}\right\|=0 \Rightarrow 2 x q-2 x^{2}-2 y p+2 y^{2}=0$		
9.	Form the partial differential equation by eliminating arbitrary constants a and b from $(x-a)^{2}+(y-b)^{2}+z^{2}=1$ Solution: Differentiating the given equation w.r.t $\mathrm{x} \& \mathrm{y}$, $z^{2}\left[p^{2}+q^{2}+1\right]=1$	BTL -4	Analyzing
10.	Solve [D -8DD' -D D'+12D']z = 0 Solution: The auxiliary equation is $\mathrm{m}^{3}-\mathrm{m}^{2}-8 \mathrm{~m}+12=0 ; \mathrm{m}=2,2,-3$ The solution is $\mathrm{z}=\mathrm{f}_{1}(\mathrm{y}+\mathrm{x})+\mathrm{f}_{2}(\mathrm{y}+2 \mathrm{x})+\mathrm{xf} \mathrm{f}_{3}(\mathrm{y}+2 \mathrm{x})$.	BTL-3	Applying
11.	Find the complete solution of $q=2 p x$ Solution Find the complete solution of $q=2 p x$ Solution: Let $q=a$ then $p=a / 2 x$ $d z=p d x+q d y$ $2 z=a \log x+2 a y+2 b$	BTL-3	Applying

12. Find the complete solution of $p+q=1$ Solution Complete integral is $z=a x+F(a) y+c$ Put $p=a, q=1-a$. Therefore $z=p x+(1-a) y+c$	BTL -3	Applying
13. Find the complete solution of $p^{3}-q^{3}=0$ Solution Complete integral is $z=a x+F(a) y+c$ Put $\mathrm{p}=\mathrm{a}, \mathrm{q}=\mathrm{a}$. Therefore $\mathrm{z}=\mathrm{px}+\mathrm{q} y+\mathrm{c}$	BTL -3	Applying
14. Solve $\left[D^{3}+D^{\prime 2}-D^{2} D^{\prime}-D^{\prime 3}\right] z=0$ The auxiliary equation is $\mathrm{m}^{3}-\mathrm{m}^{2}+\mathrm{m}-1=0$ $m=1,-i, i \Rightarrow$ The solution is $z=f_{1}(y+x)+f_{2}(y+i x)+f_{3}(y-i x)$.	BTL -3	Applying
15. Solve (D-1)(D-D'+1)z $=0$. Solution $\mathrm{z}=e^{x} f_{1}(y)+e^{-x} f_{2}(y+x)$	BTL -3	Applying
16. $\begin{aligned} & \text { Solve } \frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial z}{\partial x}=0 . \\ & \text { Solution: A.E: } \mathrm{D}[\mathrm{D}-\mathrm{D}+1]=0 \\ & \mathrm{~h}=0, \mathrm{~h}=\mathrm{k}-1 \\ & \mathrm{z}=f_{1}(y)+e^{-x} f_{2}(y+x) \end{aligned}$	BTL -3	Applying
17. $\begin{aligned} & \text { Solve }\left(D^{4}-D^{9}\right) \mathrm{z}=0 . \\ & \text { Solution: } A . E: m^{4}-1=0, m= \pm 1, \pm i . \\ & Z=C \cdot F=f_{1}(y+x)+f_{2}(y-x)+f_{3}(y+i x)+f_{4}(y-i x) .\end{aligned}$	BTL -3	Applying
18. Solve $\left(D^{2}-D D^{\prime}+D^{\prime}-1\right) Z=0$. Solution: The given equation can be written as $\begin{aligned} & (D-1)\left(D-D^{\prime}+1\right) Z=O \\ & z=e^{x} f_{1}(y)+e^{-x} f_{2}(y+x) \end{aligned}$	BTL -3	Applying
19. Solve $\mathrm{xdx}+\mathrm{ydy}=\mathrm{z}$.	BTL -3	Applying

	Solution The subsidiary equation is $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$ $\begin{aligned} & \frac{d x}{x}=\frac{d y}{y} \Rightarrow \log x=\log y+\log u \\ & u=\frac{x}{y} \text { Similarly } v=\frac{x}{z} . \end{aligned}$		
20.	```Form the p.d.e. by eliminating the arbitrary constants from \(z=a x+b y+a b\) Solution: \(z=a x+b y+a b\) \(\mathrm{p}=\mathrm{a} \& \mathrm{q}=\mathrm{b}\) \\ The required equation \(\mathrm{z}=\mathrm{px}+\mathrm{qy}+\mathrm{pq}\).```	BTL -3	Applying

PART - B			
1.(a)	Find the PDE of all planes which are at a constant distance ' k ' units from the origin.	BTL -4	Analyzing
1. (b)	Find the singular integral of $z=p x+q y+1+p^{2}+q^{2}$	BTL-2	Understandi ng
2. (a)	Form the partial differential equation by eliminating arbitrary function Φ from $\Phi\left(x^{2}+y^{2}+z^{2}, a x+b y+c z\right)=0$	BTL -4	Analyzing
2.(b)	Find the singular integral of $z=p x+q y+p^{2}+p q+q^{2}$	BTL -2	Understandi ng
3. (a)	Form the partial differential equation by eliminating arbitrary functions f and g from $\mathrm{z}=\mathrm{xf}(\mathrm{x} / \mathrm{y})+y g(x)$	BTL-4	Analyzing
3.(b)	Find the singular integral of $z=p x+q y+\sqrt{1+p^{2}+q^{2}}$	BTL -3	Applying
4. (a)	Solve (D -7DD' -6D' $\mathrm{z}=\sin (\mathrm{x}+2 \mathrm{y}$)	BTL -3	Applying
4.(b)	Form the partial differential equation by eliminating arbitrary function f and g from the relation $z=x f(x+t)+g(x+t)$	BTL-4	Analyzing
5. (a)	Solve ($\left.{ }^{2}-2 D^{\prime}\right)^{\prime} \mathrm{z}=\mathrm{x}^{3} \mathrm{y}+\mathrm{e}^{2 \mathrm{x}-\mathrm{y}}$.	BTL -3	Applying
5.(b)	Solve $x(y-z) p+y(z-x) q=z(x-y)$	BTL -3	Applying
6. (a)	Find the singular integral of $p x+q y+p^{2}-q^{2}$	BTL -2	Understandi ng
6.(b)	Find the general solution of $z=p x+q y+p^{2}+p q+q^{2}$.	BTL -3	Applying
7. (a)	Find the complete solution of $z^{2}\left(p^{2}+q^{2}+1\right)=1$	BTL -4	Analyzing

7. (b)	Find the general solution of $\left(D^{2}+2 D D^{\prime}+D^{\prime 2}\right) z=2 \cos y-x \sin y$	BTL-2	Understanding
8. (a)	Find the general solution of $\left(D^{2}+D^{\prime 2}\right) z=x^{2} y^{2}$	BTL -2	Understanding
8.(b)	Find the complete solution of $p^{2}+x^{2} y^{2} q^{2}=x^{2} z^{2}$	BTL -2	Understanding
9. (a)	Solve $\left(D^{2}-3 D D^{\prime}+2 D^{\prime 2}\right) z=(2+4 x) e^{x+2 y}$	BTL -3	Applying
9.(b)	Obtain the complete solution of $\mathrm{z}=\mathrm{px}+\mathrm{qy}+\mathrm{p}^{2}-q^{2}$	BTL-2	Understanding
10.(a)	Solve $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$	BTL -3	Applying
10.(b)	Solve $\left(D^{2}-3 D D^{\prime}+2 D^{\prime 2}\right) z=\sin (x+5 y)$	BTL -3	Applying
11(a)	Solve the Lagrange's equation $(x+2 z) p+(2 x z-y) q=x^{2}+y$	BTL-3	Applying
11(b)	Solve ($\left.D^{2}-D D^{\prime}-2 D^{\prime 2}\right) z=2 x+3 y+e^{2 x+4 y}$	BTL -3	Applying
12(a)	Solve $\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=y \cos x$	BTL-3	Applying
12(b)	Solve the partial differential equation $\left(x^{2}-y z\right) p+\left(y^{2}-x z\right) q=z^{2}-$ xy	BTL-3	Applying
13(a)	Solve ($\left.\mathrm{D}^{2}-D D^{\prime}-20 \mathrm{D}^{\prime 2}\right) \mathrm{z}=\mathrm{e}^{5 s+y}+\sin (4 \mathrm{x}-\mathrm{y})$.	BTL-3	Applying
13(b)	Solve $\left(2 D^{2}-D D^{\prime}-D^{\prime 2}+6 D+3 D^{\prime}\right) z=x e^{y}$	BTL-3	Applying
14(a)	Solve ($\left.D^{2}-2 D D^{\prime}\right) z=x^{3} y+e^{2 x-y}$	BTL-3	Applying
14(b)	Solve ($\left.D^{3}-7 D D^{\prime 2}-6 D^{\prime 3}\right) z=\sin (x+2 y)$	BTL -3	Applying
15(a)	Form the PDE by eliminating the arbitrary function from the relation $z=y^{2}+2 f\left(\frac{1}{x}+\log y\right)$.	BTL-4	Analyzing
15(b)	Solve the Lagrange's equation ($\mathrm{x}+2 \mathrm{z}$) $\mathrm{p}+(2 \mathrm{xz}-\mathrm{y})=\mathrm{x}+\mathrm{y}$.	BTL-3	Applying
16(a)	Solve $x^{2} p^{2}+y^{2} q^{2}=z^{2}$	BTL -3	Applying
16(b)	Solve ($\left.\mathrm{D}^{2}+\mathrm{DD}^{\prime}-6 \mathrm{D}^{\prime 2}\right) \mathrm{z}=\mathrm{y} \cos \mathrm{x}$	BTL -3	Applying

| UNIT II - FOURIER SERIES: Dirichlet's conditions - General Fourier series - Odd and even functions |
| :--- | :--- | :--- | :--- |
| - Half range sine series - Half range cosine series - Complex form of Fourier series - Parseval's identity |
| - Harmonic analysis. |

9.	Expand $f(x)=1$ as a half range sine series in the interval $(0, \pi)$. Solution: The sine series of $f(x)$ in $(0, \pi)$ is given by $\mathrm{f}(\mathrm{x})=\sum_{n=1}^{\infty} b_{n} \sin n x$ where $\mathrm{b}_{\mathrm{n}}=\frac{2}{\pi} \int_{0}^{\pi} \sin n x d x=-\frac{2}{n \pi}[\cos n x]_{0}^{\pi}=0 \quad$ if n is even $=\frac{4}{n \pi}$ if n is odd $\mathrm{f}(\mathrm{x})=\sum_{n=\text { odd }}^{\infty} \frac{4}{n \pi} \sin n x=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) x}{(2 n-1)}$	BTL -4	Analyzing
10.	Find the value of the Fourier Series for $\begin{array}{rlrl} f(x) & =0 & & -c<x<0 \\ & =1 & 0<x<c \quad \text { at } x=0 \end{array}$ Solution: $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=0$ is a discontinuous point in the middle. $\begin{aligned} & \mathrm{f}(\mathrm{x}) \text { at } \mathrm{x}=0=\frac{f(0-)+f(0+)}{2} \\ & \mathrm{f}(0-)=\lim _{\mathrm{h}} \mathrm{f}(0-\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0} 0=0 \\ & \mathrm{f}(0+)=\lim _{\mathrm{f}}(0+\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0} 1=1 \\ & \therefore \mathrm{f}(\mathrm{x}) \text { at } \mathrm{x}=0 \rightarrow(0+1) / 2=1 / 2=0.5 \end{aligned}$	BTL -3	Applying
11.	What is meant by Harmonic Analysis? Solution: The process of finding Euler constant for a tabular function is known as Harmonic Analysis.	BTL -4	Analyzing
12.	Find the constant term in the Fourier series corresponding to $\mathrm{f}(\mathrm{x})=$ $\cos ^{2} \mathrm{x}$ expressed in the interval $(-\pi, \pi)$. Solution: Given $\mathrm{f}(\mathrm{x})=\cos ^{2} \mathrm{x}=\frac{1+\cos 2 x}{2}$ $\begin{aligned} & \text { W.K.T } \mathrm{f}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x \\ & \text { To find } \quad \mathrm{a}_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos ^{2} x d x=\frac{2}{\pi} \int_{0}^{\pi} \frac{1+\cos 2 x}{2} d x=\frac{1}{\pi}\left[x+\frac{\sin 2 x}{2}\right]_{0}^{\pi} \\ & =\frac{1}{\pi}[(\pi+0)-(0+0)]=1 \end{aligned}$	BTL -1	Remembering
13.	Define Root Mean Square (or) R.M.S value of a function $f(x)$ over the interval (a, b). Solution: The root mean square value of $f(x)$ over the interval (a, b) is defined as	BTL -3	Applying

	$\text { R.M.S. } \quad=\sqrt{\frac{\int_{a}^{b}[f(x)]^{2} d x}{b-a}} \text {. }$		
14.	Find the root mean square value of the function $f(x)=x$ in the interval ($0, l$). Solution: The sine series of $f(x)$ in (a, b) is given by $\text { R.M.S. }=\sqrt{\frac{\int_{a}^{b}[f(x)]^{2} d x}{b-a}}=\sqrt{\frac{\int_{0}^{l}[x]^{2} d x}{l-0}}=\frac{l}{\sqrt{3}} .$	BTL -1	Remembering
15.	If $f(x)=2 x$ in the interval $(0,4)$, then find the value of a_{2} in the Fourier series expansion. Solution: $\mathrm{a}_{2}=\frac{2}{4} \int_{0}^{4} 2 x \cos [\pi x] d x=0$.	BTL -5	Evaluating
16.	To which value, the half range sine series corresponding to $f(x)=x^{2}$ expressed in the interval $(0,5)$ converges at $x=5$?. Solution: $\mathrm{x}=2$ is a point of discontinuity in the extremum. $\therefore[\mathrm{f}(\mathrm{x})]_{\mathrm{x}=5}=\frac{f(0)+f(5)}{2}=\frac{[0]+[25]}{2}=\frac{25}{2} .$	BTL -4	Analyzing
17.	If the Fourier Series corresponding to $f(x)=x$ in the interval $(0,2 \pi)$ is $\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ without finding the values of $\mathrm{a}_{0}, \mathrm{a}_{\mathrm{n}} \quad, \mathrm{b}_{\mathrm{n}}$ find the \quad value of $\frac{a_{0}{ }^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}{ }^{2}+b_{n}{ }^{2}\right)$ Solution: By Parseval's Theorem $\begin{aligned} & \frac{a_{0}{ }^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}{ }^{2}+b_{n}{ }^{2}\right)=\frac{1}{\pi} \int_{0}^{2 \Pi}[f(x)\}^{2} d x=\frac{1}{\pi} \int_{0}^{2 \pi} x^{2} d x=\frac{1}{\pi}\left[\frac{x^{3}}{3}\right]{ }_{0}^{2 \pi} \\ & \quad=\frac{8}{3} \pi^{2} \end{aligned}$	BTL -4	Analyzing
18.	Obtain the first term of the Fourier series for the function $f(x)=x^{2}$,$\pi<x<\pi$. Solution: Given $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$, is an even functionin $-\pi<\mathrm{x}<\pi$. Therefore, $a_{o}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} x^{2} d x=\frac{2}{\pi}\left[\frac{x^{3}}{3}\right]_{0}^{\pi}=\frac{2}{3} \pi^{2}$	BTL -1	Remembering
19.	Find the co-efficient b_{n} of the Fourier series for the function $f(x)=$ $x \sin x$ in $(-2,2)$. Solution: $x \sin x$ is an even function in $(-2,2)$. Therefore $b_{n}=0$.	BTL -4	Analyzing

20. Find the sum of the Fourier Series for
BTL - 3

Applying $f(x)=x \quad 0<x<1$ $=2 \quad 1<x<2 \quad$ at $x=1$.
Solution: $f(x)$ at $x=1$ is a discontinuous point in the middle.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x}) \text { at } \mathrm{x}=1=\frac{f(1-)+f(1+)}{2} \\
& \mathrm{f}(1-)=\lim _{\mathrm{h}} \mathrm{f}(1-\mathrm{h})=\lim _{\mathrm{h} \rightarrow 0} 1-\mathrm{h}=1 \\
& \mathrm{f}(1+)=\lim _{\mathrm{h}} \mathrm{f}(1+\mathrm{h})=\lim ^{2} 2=2 \\
& \mathrm{~h} \rightarrow 0 \quad \mathrm{~h} \rightarrow 0 \\
& \therefore \mathrm{f}(\mathrm{x}) \text { at } \mathrm{x}=1 \rightarrow(1+2) / 2=3 / 2=1.5
\end{aligned}
$$

PART - B

1.(a)	Obtain the Fourier's series of the function $f(x)=\left\{\begin{array}{ccc} x & \text { for } & 0<x<\pi \\ 2 \pi-x & \text { for } & \pi<x<2 \pi \end{array} .\right.$ Hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .=\frac{\pi^{2}}{8}$							BTL -1	Remembering
1.(b)	Find the Fourier's series of $f(x)=\|x\|$ in $-\pi<x<\pi$ And deduce that $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}$							BTL -1	Remembering
2.(a)	Find the Fourier's series expansion of period $2 l$ for $f(x)=(l-x)^{2}$ in the range $(0,2 l)$. Hence deduce that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots=\frac{\pi^{2}}{6}$							BTL -2	Understanding
2.(b)	Find the Fourier series of periodicity 2π for $\mathrm{f}(\mathrm{x})=x^{2}$ in $-\pi \leq$ $x \leq \pi$. Hence deduce that $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\ldots \ldots=\frac{\pi^{4}}{90}$.							BTL -2	Understanding
3.(a)	Find the Fourier series upto second harmonic for the following data: \qquad						following $\begin{aligned} & \frac{5}{20} \\ & \hline \end{aligned}$	BTL -1	Remembering

3.(b)	Find the Fourier series of $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-\mathrm{x}^{2}$ in the interval $0<\mathrm{x}<2$							BTL -1	Remembering
4.(a)	Obtain the half range cosine series of the function$f(x)=\left\{\begin{array}{l} x \text { in }\left(0, \frac{l}{2}\right) \\ l-x\left(\frac{l}{2}, l\right) \end{array}\right.$							BTL -4	Analyzing
4.(b)	Find the half range sine series of the function $f(x)=x(\pi-x)$ in the interval $(0, Л)$.							BTL -3	Applying
5.(a)	Determine the Fourier series for the function $f(x)=\|\sin x\|$ in $-\pi \quad \mathrm{x}$.							BTL -4	Analyzing
5.(b)	Find the complex form of the Fourier series of $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-\mathrm{ax}}$ in (-1,1)							BTL -1	Remembering
6.(a)	Find the Fourier series for $f(x)=x \sin x$ in $(-\pi, \pi)$.							BTL -2	Remembering
6.(b)	Find the Fourier series expansion of $f(x)=x+x^{2}-2 \leq x \leq 2$.							BTL -2	Remembering
7.(a)	Find the Fourier series for $f(x)= \begin{cases}x & (0, \pi / 2) \\ \pi-x & (\pi / 2,2 \pi)\end{cases}$							BTL -4	Analyzing
7.(b)	Find the Fourier series of $f(\mathrm{x})=\mathrm{x}+\mathrm{x}^{2}$ in $(-1,1)$ with period 21.							BTL -3	Applying
8.(a)	Find the Fourier series as far as the second harmonic to represent the function $\mathrm{f}(\mathrm{x})$ with period 6 , given in the following table.							BTL -4	Analyzing
	X	0	1	2	3	4	5		
	$\mathrm{f}(\mathbf{x})$	9	18	24	28	26	20		

14.(a)	Find the complex form of the Fourier series of$f(\mathrm{x})=\mathrm{e}^{-\mathrm{s}} \text { in }-1<\mathrm{x}<1 .$							BTL -4	Analyzing
14.(b)	Find the Fourier series up to the second harmonic from the following table.							BTL -4	Analyzing
	X	0	1	2	3	4	5		
	$\mathrm{f}(\mathrm{x})$	9	18	24	28	26	20		

UNIT - III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Solution of one dimensional wave equation-One dimensional heat equation-Steady state solution of two dimensional heat equation-Fourier series solutions in Cartesian coordinates .

Textbook : Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi, 2012.

PART - A

Q.No	Questions	$\begin{gathered} \text { BT } \\ \text { Level } \end{gathered}$	Competence
1	What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation. Solution: The correct solution of one dimensional wave equation is of periodic in nature. But the solution of heat equation is not periodic in nature.	BTL-4	Analyzing
2	In steady state conditions derive the solution of one dimensional heat flow equations. [Nov / Dec 2005] Solution: one dimensional heat flow equation is $\begin{equation*} \frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}} . \tag{1} \end{equation*}$ When the steady state conditions exists, put $\frac{\partial u}{\partial t}=0$ Then (1) becomes, $\frac{\partial^{2} u}{\partial x^{2}}=0$. Solving, we get $u(x)=a x+b$. a and b are arbitrary constants.	BTL-2	Understanding

3	What are the possible solution of one dimensional wave equation. Solution: The possible solutions are (i) $\mathrm{y}(\mathrm{x}, \mathrm{t})=($ $\begin{align*} & \left.A_{1} e^{p x}+A_{2} e^{-p x}\right)\left(A_{3} e^{p a t}+A_{4} e^{-p a t}\right) \tag{ii}\\ & \mathrm{y}(\mathrm{x}, \mathrm{t})=\left(B_{1} \cos p x+B_{2} \sin p x\right)\left(B_{3} \cos p a t+B_{4} \sin p a t\right) \text { (iii) } \\ & \mathrm{y}(\mathrm{x}, \mathrm{t})=\left(C_{1} x+C_{2}\right)\left(C_{3} t+C_{4}\right) \end{align*}$	BTL-1	Remembering
4	Classify the P.D.E $3 u_{x x}+4 u_{y y}+3 u_{y}-2 u_{x}=0$. Solution: $B^{2}-4 A C=16-4(3)(0)=16>0$. hyperbolic.	BTL-1	Remembering
5	The ends A and B of a rod of length 10 cm long have their temperatures kept at $20^{\circ} \mathrm{Cand} 70^{\circ} \mathrm{C}$. Find the Steady state temperature distribution of the rod. Solution: The initial temperature distribution is $u(x, 0)=$ $\begin{aligned} & \frac{b-a}{l} x+a . \text { Here } \\ & a=20^{\circ} C, b=70^{\circ} C, l=10 \mathrm{~cm} . \\ & \therefore u(x, t)=\frac{70-20}{10} x+20=5 x+20.0<x<10 . \end{aligned}$	BTL-1	Remembering
6	$\begin{aligned} & \text { Classify } \\ & \begin{array}{l} \frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial^{2} u}{\partial x \partial y}+4 \frac{\partial^{2} u}{\partial y^{2}}-12 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+7 u=x^{2}+y^{2} . \\ \frac{\text { Solution: }}{u_{x x}+4 u_{x y}}+4 u_{y y}-12 u_{x}+u_{y}+7 u=x^{2}+y^{2} . \mathrm{A}=1 ; \mathrm{B}=4 ; \mathrm{C}=4 . \\ B^{2}-4 A C=16-16=0 . \end{array} \end{aligned}$ \therefore The given PDE is parabolic.	BTL-3	Applying
7	Write down the one dimensional heat equation. Solution: The one dimensional heat equation is $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{\alpha^{2}} \frac{\partial u}{\partial t}$.	BTL-1	Remembering
8	Write down the possible solutions of one dimensional heat flow equation. Solution: The various possible solutions of one dimensional heat equation are (i) $\mathrm{u}(\mathrm{x}, \mathrm{t})=\left(A e^{p x}+B e^{-p x}\right) e^{\alpha^{2} p^{2} t}$ (ii) $(A \cos p x+B \sin p x) e^{-\alpha^{2} p^{2} t}$ (iii) $u(x, t)=(A x+B)$.	BTL-1	Remembering

9	Write the one dimensional wave equation with initial and boundary conditions in which the initial position of the string is $f(x)$ and the initial velocity imparted at each point is $g(x)$. Solution: The wave equation is $\frac{\partial^{2} y}{\partial t^{2}}=\alpha^{2} \frac{\partial^{2} y}{\partial x^{2}}$. The boundary conditions are (i) $\mathrm{y}(0, \mathrm{t})=0, \forall \mathrm{t}>0$ (ii) $\mathrm{y}(0, \mathrm{t})=0, \forall t>0$ (iii) $\frac{\partial y}{\partial t}(x, 0)=g(x), 0<x<l$. (iv) (iv) $y(x, 0)=f(x), 0<x<1$.	BTL-3	Applying
10	Classify the partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{\alpha^{2}} \frac{\partial u}{\partial t}$ Solution: Given $\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{\alpha^{2}} \frac{\partial u}{\partial t}$ $\begin{aligned} & \alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial u}{\partial t}=0 \\ & \text { HereA }=\alpha^{2} ; B=0 ; C=0 . \\ & \therefore B^{2}-4 A C=0-4\left(\alpha^{2}\right)(0)=0 . \end{aligned}$	BTL-1	Remembering
11	State the two dimensional Laplace equation? Solution: $\mathrm{U}_{\mathrm{xx}}+\mathrm{U}_{\mathrm{yy}}=0$	BTL-1	Remembering
12	In an one dimensional heat equation $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$ what does the constant stands for ? Solution : α^{2} is called the diffusivity of the material of the body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation $k / \rho \alpha=Q$.	BTL-1	Remembering
13	What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation. Solution: Solution of the one dimensional wave equation is of periodic in nature. But Solution of the one dimensional heat equation is not of periodic in nature.	BTL-1	Remembering

14	In the wave equation $\frac{\partial^{2} y}{\partial t^{2}}=\alpha^{2} \frac{\partial^{2} y}{\partial x^{2}}$, What does α^{2} stands for ? Solution : $\mathrm{a}^{2}=\frac{\text { Tension }}{\text { MassperUnitlength }}$	BTL-1	Remembering
15	In 2D heat equation or Laplace equation, What is the basic assumption? Solution: When the heat flow is along curves instead of straight lines, the curves lying in parallel planes the flow is called two dimensional	BTL-4	Analyzing
16	Define steady state condition on heat flow. Solution: Steady state condition in heat flow means that the temp at any point in the body does not vary with time. That is, it is independent of t, the time.	BTL-1	Remembering
17	Write the solution of one dimensional heat flow equation , when the time derivative is absent. Solution : When time derivative is absent the heat flow equation is $U_{x x}=0$	BTL-2	Understanding
18	If the solution of one dimensional heat flow equation depends neither on Fourier cosine series nor on Fourier sine series, what would have been the nature of the end conditions? Solution :. One end should be thermally insulated and the other end is at zero temperature.	BTL-1	Remembering
19	State any two laws which are assumed to derive one dimensional heat equation? Solution: (i)The sides of the bar are insulated so that the loss or gain of heat from the sides by conduction or radiation is negligible. (ii)The same amount of heat is applied at all points of the face	BTL-1	Remembering
20	What are the assumptions made before deriving the one dimensional heat equation? Solution : (i)Heat flows from a higher to lower temperature. (ii)The amount of heat required to produce a given temperature change in a body is proportional to the mass of the body and to the temperature change. (iii)The rate at which heat flows through an area is	BTL-1	Remembering

	proportional to the area and to the temperature gradient normal to the area.		
21	Write down the two dimensional heat equation both in transient and steady states. Solution : Transient state: $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$ Steady state: : $\mathrm{U}_{\mathrm{xx}}+\mathrm{U}_{\mathrm{yy}}=0$	BTL-2	Understanding
PART-B			
1	A uniform string is stretched and fastened to two points ' l ' apart. Motion is started by displacing the string into the form of the curve $y=k x(l-x)$ and then releasing it from this position at time $t=0$. Find the displacement of the point of the string at a distance x from one end at time t.	BTL-4	Analyzing
2	A tightly stretched string of length l has its ends fastened at $x=0$ and $x=l$. The midpoint of the string is then taken to a height h and then released from rest in that position. Obtain an expression for the displacement of the string at any subsequent time.	BTL-4	Analyzing
3	A tightly stretched string of length $2 l$ is fastened at both ends. The midpoint of the string is displaced by a distance ' b ' transversely and the string is released from rest in this position. (Find the lateral displacement of a point of the string at time ' t ' from the instant of release) Find an expression for the transverse displacement of the string at any time during the subsequent motion	BTL-4	Analyzing
4	A tightly stretched string of length 1 is initially at rest in equilibrium position and each point of it is given the velocity $\left(\frac{\partial y}{\partial y}\right)_{t=0}=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. Find the displacement at any time ' t '	BTL-5	Analyzing
5	A string is stretched between two fixed points at a distance $2 l$ apart and the points of the string are given initial	BTL-2	Understanding

	velocities v where $v=\left\{\begin{array}{ll}\frac{c x}{l} & 0<x<l \\ \frac{c}{l}(2 l-x) & l<x<2 l\end{array}, x\right.$ being the distance from one end point. Find the displacement of the string at any subsequent time. .		
6	A rod 30 cm long has its ends A and B kept at $20^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{c}$ respectively until steady state conditions prevails. The temperature at each end is then suddenely reduced to $0^{\circ} c$ and kept so. Find the resulting temperature function $u(x, t)$ taking $x=0$ at A.(Nov./Dec. 2009).	BTL-2	Understanding
7	A rod of length 1 has its ends A and B kept at $0^{\circ} c$ and $120^{\circ} c$ respectively until steady state conditions prevail. If the temperature at B is reduced to $0^{\circ} \mathrm{c}$ and so while that of A is maintained, find the temperature distribution of the rod.	BTL-4	Analyzing
8	An infinitely long rectangular plate with insulated surface is 10 cm wide. The two long edges and one short edge are kept at zero temperature, while the other short edge $x=0$ is kept at temperature given by $u=\left\{\begin{array}{c} 20 y, 0 \leq y \leq 5 \\ 20(10-y), 5 \leq y \leq 10 \end{array}\right.$	BTL-4	Analyzing
9	A string is stretched and fastened to two points \boldsymbol{l} apart. Motion is started by displacing the string into the form $\mathrm{y}=$ $\mathrm{k}\left(\boldsymbol{l}_{\mathrm{x}}^{\mathrm{x}} \mathrm{x}^{2}\right)$ from which it is released at time $\mathrm{t}=0$. Find the displacement of any point on the string at a distance x from one end at time t.	BTL-4	Analyzing
10	A square plate is bounded by the lines $x=0, x=a, y=0$ and y $=b$. Its surfaces are insulated and the temperature along $y=b$ is kept at $100^{\circ} \mathrm{C}$. Find the steady-state temperature at any point in the plate.	BTL-4	Analyzing
11	A tightly stretched string with fixed end points $x=0$ and $x=1$ is initially in a position given by $y(x, 0)=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. Find	BTL-2	Understanding

| | the displacement at any time' t^{\prime}. | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

UNIT - IV FOURIER TRANSFORM

Fourier integral theorem (without proof) - Fourier transform pair -Sine and Cosine transformsProperties - Transforms of simple functions - Convolution theorem - Parseval's identity.
Textbook : Grewal. B.S., and Grewal. J.S., "Numerical Methods in Engineering and Science", 9th Edition,Khanna Publishers, New Delhi, 2007.

PART - A			
CO Mapping: C214.2			
Q.No	Questions	BT Level	Competence
1	Prove that $\mathrm{F}[\mathrm{f}(\mathrm{x}-\mathrm{a})]=\mathrm{e}^{\mathrm{ias}} F(s)$ Proof: $\begin{aligned} & F(f(x))=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i x x} d x \\ & F(f(x-a))=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x-a) e^{i x x} d x, \quad \text { put } t=x-a ; \\ & x \rightarrow \pm \infty= \\ & F(f(x-a))=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) e^{i s(t+a)} d t=e^{i s a} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) \end{aligned}$	BTL-4 $\begin{aligned} & d t=d x \\ & \Rightarrow t \rightarrow \pm \\ & e^{i s t} d t=e \end{aligned}$	Analyzing o ${ }^{s a} F(s) .$
2	Prove that $F(f(x) \cos a x)=\frac{1}{2}[F(s+a)+F(s-a)]$. Proof:	BTL-1	Remembering

	$\begin{aligned} F(f(x) \cos a x) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \cos a x e^{i s x} d x \\ & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \frac{e^{i a x}+e^{-i a x}}{2} e^{i s x} d x \\ & =\frac{1}{2}\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i(s+a) x} d x+\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x)\right. \\ & =\frac{1}{2}[F(s+a)+F(s-a)] . \end{aligned}$	$e^{i(s-a) x} d x$	
3	Prove that $F_{c}(f(x) \sin a x)=\frac{1}{2}\left[F_{s}(s+a)+F_{s}(s-a)\right]$ Proof: $\begin{aligned} F_{c}(f(x) \cos a x) & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin a x \cos s x d x \\ & =\frac{1}{2} \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x)(\sin (s+a) x+\sin (s-a) x) d x \\ & =\frac{1}{2}\left(\sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} f(x) \sin (s+a) x d x+\sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} f(x) s\right. \\ = & \frac{1}{2}\left[F_{s}(s+a)+F_{s}(s-a)\right] . \end{aligned}$	BTL-2 $\sin (s-a)$	Understanding $d x)$
4	Find the Fourier sine transform of $\mathrm{e}^{-\mathrm{x}}, \mathrm{x}>0$. Solution: $\begin{aligned} F_{s}(f(x)) & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin s x d x=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-x} \sin s x d x \\ & =\sqrt{\frac{2}{\pi}}\left[\frac{e^{-x}}{1+s^{2}}(-\sin s x-s \cos s x)\right]_{0}^{\infty}=\sqrt{\frac{2}{\pi}} \end{aligned}$	BTL-4 $\frac{s}{1+s^{2}}$	Analyzing
5	Write the Fourier transform pair. Proof:	BTL-1	Remembering

	$\begin{aligned} & F(s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{i s x} d x \\ & f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(s) e^{-i s x} d s \end{aligned}$		
6	Find the Fourier sine transform of $\frac{1}{x}$. Solution: $\begin{aligned} & \begin{array}{l} F_{s}(f(x))=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin s x d x \end{array}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{1}{x} \sin s x d x \\ & \text { put } s x=\theta ; \text { sdx }=d \theta ; \quad=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\sin \theta}{\theta} d \theta= \end{aligned}$	BTL-2 $\sqrt{\frac{2}{\pi}} \frac{\pi}{2}$	Understanding $=\sqrt{\frac{\pi}{2}} .$
7	Find the Fourier cosine transform of $f(a x)$. Solution: $\begin{aligned} F_{c}(f(a x)) & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(a x) \cos s x d x \\ \text { put } t=a x & ; d t=a d x \\ & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos \left(\frac{s t}{a}\right) \frac{d t}{a}=\frac{1}{a} F_{c}\left(\frac{s}{a}\right) . \end{aligned}$	BTL-2	Understanding
8	Find the Fourier Cosine transform of $e^{-a x}$. Solution: $\begin{aligned} F_{c}\left[e^{-a x}\right] & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-a x} \cos s x d x=\sqrt{\frac{2}{\pi}}\left[\frac{e^{-a x}}{a^{2}+s^{2}}(-a \cos \right. \\ & =\sqrt{\frac{2}{\pi}} \frac{a}{a^{2}+s^{2}} \end{aligned}$	BTL-1 $s x+s \mathrm{~s}$	Remembering $[\sin s x]_{0}^{\infty}$
9	Find the Fourier transform of $f(x)= \begin{cases}e^{i k x}, & a<x<b \\ 0, & x<a, x>b\end{cases}$ Solution:	BTL-1	Remembering

	$\begin{aligned} F[f(x)] & =\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{i(x x} e^{i s x} d x=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{i(s+k) x} d x=\frac{1}{\sqrt{2}} \\ & =\frac{1}{\sqrt{2 \pi}}\left[\frac{e^{i(s+k) b}-e^{i(s+k) a}}{i(s+k)}\right] . \end{aligned}$	$=\left[\frac{e^{i(s+1}}{i(s+}\right.$	$\left.\frac{x}{k)}\right]_{a}^{b}$
10	State convolution theorem. Solution : If $F(s)$ and $G(s)$ are fourier transforms of $f(x)$ and $g(x)$ respectively then the fourier transform of the convolutions of $f(x)$ and $g(x)$ is the product of their fourier transform.	BTL-1	Remembering
11	Write the Fourier cosine transform pair? Solution : $\begin{aligned} & F_{c}(s)=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} f(x) \cos s x d x \\ & f(x)=\frac{\sqrt{2}}{\sqrt{\pi}} \int_{0}^{\infty} F_{c}(f(x) \cos s x d s \end{aligned}$	BTL-2	Understanding
12	Write Fourier sine transform and its inversion formula? Solution : $\begin{aligned} & F_{s}(s)=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty} f(x) \sin s x d x \\ & f(x)=\frac{\sqrt{2}}{\sqrt{\pi}} \int_{0}^{\infty} F_{s}(f(x) \sin s x d s \end{aligned}$	BTL-4	Analyzing
13	State the modulation theorem in Fourier transform . Solution : If $\mathrm{F}(\mathrm{s})$ is the Fourier transform of $\mathrm{f}(\mathrm{x})$, then $\mathrm{F}[\mathrm{f}(\mathrm{x}) \cos \mathrm{ax}]=1 / 2[\mathrm{~F}(\mathrm{~s}+\mathrm{a})+\mathrm{F}(\mathrm{s}-\mathrm{a})$.	BTL-4	Analyzing
14	State the Parsevals identity on Fourier transform. Solution: If $F(s)$ is the Fourier transform of $f(x)$, then $\int_{-\infty}^{\infty}\|f(x)\|^{2} d x=\int_{-\infty}^{\infty}\|F(s)\|^{2} d s$	BTL-4	Analyzing
15	State Fourier Integral theorem . Solution : If $f(x)$ is piecewise continuously differentiable \& absolutely integrable in $(-\infty, \infty)$ then $\mathrm{f}(\mathrm{x})=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t) e^{i s(x-t)} d t d s$ This is known as Fourier integral theorem	BTL-1	Remembering
16	Define self-reciprocal with respect to Fourier Transform. Solution: If a transformation of a function $f(x)$ is equal to $f(s)$ then the function $f(x)$ is called self-reciprocal	BTL-4	Analyzing

PART - B				
1	Find the Fourier transform of $\begin{aligned} & f(x)=\left\{\begin{array}{l} a^{2}-x^{2},\|x\| \leq a \\ 0, \quad\|x\| \phi a \end{array} .\right. \text { Hence evaluate } \\ & \int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \left(\frac{s}{2}\right) d x . \end{aligned}$	BTL-4	Afarly	
2	Find the Fourier cosine transform of $f(x)=e^{-a x}, a>0$ and $g(x)=e^{-b x}, b>0$. Hence evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+9\right)}$.	BTL-4	Analyzing	
3	Find the Fourier Transform of $\mathrm{f}(\mathrm{x})$ given by $\begin{aligned} & f(x)=\left\{\begin{array}{ll} a-\|x\|, & \|x\| \leq a \\ 0, & \|x\| \phi a \end{array}\right. \text {. Hence show that } \\ & \int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{2} d t=\frac{\pi}{2} \text { and } \int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{4} d t=\frac{\pi}{3} . \end{aligned}$	BTL-4	Analyzing	
4	Find the Fourier transform of $f(x)=\left\{\begin{array}{l} 1, \text { for }\|x\| \leq a \\ 0, \text { for }\|x\| \phi a \phi 0 \end{array}\right. \text { and using Parseval's }$ identity prove that $\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{2} d t=\frac{\pi}{2}$.	BTL-4	Analyzing	
5	Find the Fourier sine and cosine transform of $e^{-a x}$ and hence find the Fourier sine transform of $\frac{x}{x^{2}+a^{2}}$ and Fourier cosine transform of $\frac{1}{x^{2}+a^{2}}$.	BTL-4	Analyzing	
6	Find the Fourier cosine transform of $e^{-x^{2}}$.	BTL-4	Analyzing	
7	Prove that $\frac{1}{\sqrt{x}}$ is self reciprocal under Fourier sine	BTL-4	Analyzing	

	and cosine transforms.			
8	Evaluate $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$ using Fourier	BTL-4	Analyzing	
9	By finding the Fourier cosine transform of $f(x)=e^{-a x}(a \phi 0)$ and using Parseval's identity for cosine transform evaluate $\int_{0}^{\infty} \frac{d x}{\left(a^{2}+x^{2}\right)^{2}}$.	BTL-3	Applying	
10	If $F_{c}(s)$ and $G_{c}(s)$ are the Fourier cosine transform of $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ respectively, then prove that $\int_{0}^{\infty} f(x) g(x) d x=\int_{0}^{\infty} F_{c}(s) G_{c}(s) d s$.	BTL-3	Applying	
11.	Find the Fourier sine transform of $f(x)= \begin{cases}x, & 0 \pi x \pi 1 \\ 2-x, & 1 \pi x \pi 2 \\ 0, & x \phi 2\end{cases}$	BTL-4	Analyzing	
12.	If $F_{c}(f(x))=F_{c}(s)$, prove that $F_{c}\left(F_{c}(x)\right)=f(s)$.	BTL-3	Applying	
13	Use transform method to evaluate $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$	BTL-3	Applying	

UNIT-V Z -TRANSFORMS AND DIFFERENCE EQUATIONS

Z-transforms - Elementary properties - Inverse Z-transform - Convolution theorem -Formation of difference equations - Solution of difference equations using Z-transform.

PART - A				
CO Mapping :				
Q.No	Questions	$\begin{gathered} \hline \text { BT } \\ \text { Level } \end{gathered}$	Competence	PO
1.	Define the unit step sequence. Write its Z- transform. Soln: It is defined as $\left\{\begin{array}{l} 1, k>0 \\ 0, k<0 \end{array} \quad \mathrm{U}(\mathrm{k}):\{1,1,1, \ldots \ldots \ldots)=\right.$	BTL -1	Remembering	

	Hence $\mathrm{Z}[\mathrm{u}(\mathrm{k})]=1+1 / \mathrm{z}+1 / \mathrm{z}^{2}+\ldots .+=\frac{1}{1-1 / z}=$ $\frac{z}{z-1}$			
2.	Form adifference equation by eliminating the arbitrary constant A from $\mathrm{y}_{\mathrm{n}}=\mathrm{A} .3^{\mathrm{n}}$ Soln: $y_{n}=A .3^{n}, y_{n+1}=A .3^{n+1}=3 A 3^{n}=3 y_{n}$ Hence $\mathrm{y}_{\mathrm{n}+1}-3 \mathrm{y}_{\mathrm{n}} 0$	BTL -1	Understanding	
3.	Find the Z transform of $\sin \frac{n n \pi}{2}$ Soln: We know that, $\mathrm{z}[\sin \mathrm{n} \theta]=\frac{Z \operatorname{sinn} \theta}{z 2-2 z \cos \theta+1}$ Put $\theta=\pi / 2 \mathrm{z}\left[\sin \frac{n \pi}{2}\right]=\frac{z \sin n \pi / 2}{z 2-\frac{2 z \cos \pi}{2}+1}=\frac{z}{z 2+1}$	BTL -5	Understanding	
4.	Find $Z(n)$. Soln: $\mathrm{Z}(\mathrm{n})=\frac{Z}{(z-1) 2}$	BTL -1	Remembering	
5.	Express $\mathrm{Z}\{\mathrm{f}(\mathrm{n}+1)\}$ in terms of $\mathrm{f}(\mathrm{z})$ Soln: $\mathrm{Z}\{\mathrm{f}(\mathrm{n}+1)\}=\mathrm{zf}(\mathrm{z})-\mathrm{zf}(0)$	BTL -1	Remembering	
6.	Find the value of $\mathrm{z}\{\mathrm{f}(\mathrm{n})]$ when $\mathrm{f}(\mathrm{n})=\mathrm{na}^{\mathrm{n}}$ Soln: $\mathrm{z}\left(\mathrm{na}^{\mathrm{n}}\right)=\frac{a z}{(\mathrm{z}-a)}$	BTL -1	Understanding	
7.	Find $\mathrm{z}\left[\mathrm{e}^{\text {-ata }}\right]$ using Z transform. Soln. By shifting property, $\mathrm{z}\left[\mathrm{e}^{-\mathrm{iat}}\right]=\mathrm{ze}^{\mathrm{iaT}} / \mathrm{ze}^{\mathrm{iaT}}-1$	BTL -1	Remembering	
8.	Find the Z transform of an / n !. Soln: $\mathrm{z}\left[a^{n} / \mathrm{n}!\right]=\mathrm{e}^{\mathrm{a} / \mathrm{z}} \quad$ (By definition)	BTL -1	Understanding	
9.	State initial value theorem in Z-transform. Solution : If $f(t)=F(z)$ then $\lim _{t \rightarrow 0} f(t)=\lim _{z \rightarrow \infty} F(z)$.	BTL -1	Understanding	
10.	State final value theorem in Z-transform. Solution : If $f(t)=F(z)$ then $\lim _{t \rightarrow \infty} f(t)=\lim _{z \rightarrow 0} F(z)$. State Euler formula.	BTL -1	Understanding	
11.	State Convolution theorem on Z-transform. Solution : If $X(z)$) and $Y(z)$ are Z - transforms of $x(n)$ and $y(n)$ respectively then the Z - transform of the convolutions of $\mathrm{x}(\mathrm{n})$ and $\mathrm{y}(\mathrm{n})$ is the product of their Z - transform.	BTL -1	Understanding	
12.	Define Z-tranforms of $f(t)$. Solution : Z-transform for discrete values of t : If $f(t)$ is a	BTL -1	Understanding	

20.	Find $\mathrm{Z}\left[\frac{a^{n}}{n!}\right]$ Solution : $\mathrm{Z}\left[\frac{a^{n}}{n!}\right]=e^{\frac{a}{z}}$	BTL-!	Understanding	
PART-B				
1.	Find the Z-transform of $\cos n \theta$ and $\sin n \theta$. Hence deduce the Z-transform of $\cos (n+1) \theta$ and $a^{n} \sin n \theta$	BTL -1	Remembering	
2	Use residue theorem find $Z^{-1}\left[\begin{array}{c}z(z+1) \\ (z-3)^{3}\end{array}\right)$	BTL -3	Applying	
3	Solve $\mathrm{y}_{\mathrm{n}+2}-5 \mathrm{y}_{\mathrm{n}+1}+6 \mathrm{y}_{\mathrm{n}}=6{ }^{\mathrm{n}}, \mathrm{y}_{0}=1, \mathrm{y}_{1}=0$	BTL -1	Remembering	
4	Solve using Z-Transform $u_{n+2}+6 u_{n+1}+9 u_{n}=$ $2^{n} ;$ given $u_{0}=u_{1}=0$	BTL -1	Remembering	
5	Using convolution theorem find the inverse Z transform of $\left(\frac{z}{z-4}\right)^{3}$	BTL -2	Understanding	
6	Solve $\mathrm{y}_{\mathrm{n}+2}+6 \mathrm{y}_{\mathrm{n}+1}+9 \mathrm{y}_{\mathrm{n}}=2 \mathrm{n}, \mathrm{y}_{0}=0, \mathrm{y}_{1}=0$	BTL -1	Remembering	
7	Using convolution theorem find $Z^{-1}\left(\frac{z^{2}}{(z-4)(z-3)}\right)$	BTL -1	Remembering	
8	Fnd the inverse Z -transform of $\frac{Z^{3}-20 Z}{(Z-2)^{3}(Z-4)}$	BTL -3	Applying	
9	Find $Z^{-1}\left(\frac{8 z^{2}}{(2 z-1)(4 z+1)}\right)$	BTL -3	Applying	

10	State and Prove Convolution theorem	BTL -3	Applying	
11	Solve $\mathrm{y}_{\mathrm{n}+2}+6 \mathrm{y}_{\mathrm{n}+1}+9 \mathrm{y}_{\mathrm{n}}=2^{\mathrm{n}}, \mathrm{y}_{0}=0, \mathrm{y}_{1}=0$	BTL -4	Analyzing	
12	Prove that $\mathrm{Z}\left(\frac{1}{n}\right)=\log \left(\frac{z}{z-1}\right)$	BTL -3	Applying	
13	Using convolution theorem evaluate inverse Z- transform of $\left[\frac{z^{2}}{(z-1)(z-3)}\right]$	BTL -1	Remembering	

