DHANALAKSHMI SRINIVASAN COLLEGE OF ENGINEERING AND TECHNOLOGY QUESTION BANK

SUBJECT: MA3351- TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

SEMESTER / YEAR: III / II BME

UNIT I - PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange's linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

	PART- A						
Q.No.	Question	Bloom's Taxonomy Level	Domain				
1.	Form a partial differential equation by eliminating the arbitrary constants 'a' and 'b' from $z = ax^2 + by^2$. Solution p=2ax, q=2by a= p/2x, b=q/2y therefore PDE is 2z=px+qy.	BTL -4	Analyzing				
2.	Eliminate the arbitrary function from $z = f(y/x)$ and form the partial differential equation Solution: $px+qy=0$	BTL -4	Analyzing				
3.	Form the PDE from $(x - a)^2 + (y - b)^2 + z^2 = r^2$. Solution Differentiating the given equation w.r.t x &y, $z^2[p^2+q^2+1]=r^2$.	BTL -3	Applying				
4.	Find the complete integral of p+q=pq. Solution p=a, q=b therefore $z=ax + \frac{a}{a-1}y + c$.	BTL- 4	Analyzing				
5.	Form the partial differential equation by eliminating the arbitrary constants a, b from the relation log(az 1) x ay b.	BTL -4	Analyzing				
	Solution: $\log(az - 1) = x + ay + b$ $\text{Diff. p.w.r.t x&y,} \frac{ap}{az - 1} = 1 - eqn1 \qquad \& \frac{aq}{az - 1} = a - eqn2$ $\frac{Eqn1}{Eqn2} \Rightarrow q = ap \ Sub \ in \ a(z - p) = 1 \Rightarrow q(z - p) = p$						
6.	Form the PDE by eliminating the arbitrary constants a,b from the relation $z = ax^3 + by$. Solution: Differentiate w.r.t x and y $p = 3ax^2$, $q = 3by^2$ therefore $3z = px+qy$.	BTL -4	Analyzing				
7.	Form a p.d.e. by eliminating the arbitrary constants from $z = (2x^2+a)(3y-b)$. Solution: $p = 4x(3y-b)$, $q = 3(2x^2+a)$ 3y - b = p/4x $(2x^2+a) = q/3$. Therefore $12xz = pq$.	BTL -4	Analyzing				
8.	Form the partial differential equation by eliminating arbitrary function ϕ from $\phi(x^2 + y^2, z-xy)$ 0	BTL -4	Analyzing				
	Solution: $u = x^2 + y^2$ and $v = z - xy$. Then $= 2x$, $u_y = 2y$; $v_x = p - y$;						

	$ v_y = q-x. \begin{vmatrix} u_x & u_y \\ v_x & v_x \end{vmatrix} = 0 \Rightarrow 2xq - 2x^2 - 2yp + 2y^2 = 0$		
9.	Form the partial differential equation by eliminating arbitrary constants a and b from $(x-a)^2 + (y-b)^2 + z^2 = 1$ Solution : Differentiating the given equation w.r.t x &y,	BTL -4	Analyzing
	$z^{2}[p^{2}+q^{2}+1]=1$		
10.	Solve [D -8DD' -D D'+12D']z = 0 Solution: The auxiliary equation is m^3 - m^2 -8m+12=0; $m = 2,2,-3$ The solution is $z = f_1(y+x)+f_2(y+2x)+xf_3(y+2x)$.	BTL -3	Applying
11.	Find the complete solution of $q = 2 px$ Solution Find the complete solution of $q = 2 px$ Solution: Let $q = a$ then $p = a/2x$ $dz = pdx + qdy$ $2z = alogx + 2ay + 2b$.	BTL -3	Applying

12.	Find the complete solution of p+q=1	BTL -3	Applying
12.	Solution Complete integral is $z = ax + F(a) y + c$		
	Put $p = a$, $q = 1$ -a. Therefore $z = px + (1-a)y + c$		
13.	Find the complete solution of $p^3 - q^3 = 0$	BTL -3	Applying
	Solution Complete integral is $z = ax + F(a) y + c$		
	Put $p = a$, $q = a$. Therefore $z = px + qy + c$		
14.	Solve $[D^3+DD^{2}-D^2D^{2}-D^{3}]z = 0$ Solution	BTL -3	Applying
	The auxiliary equation is m ³ -m ² +m-1=0		
	$m = 1, -i, i \Rightarrow \text{The solution is } z = f_1(y+x) + f_2(y+ix) + f_3(y-ix).$		
	Solve $(D-1)(D-D'+1)z = 0$.	BTL -3	Applying
	Solution $z = e^x f_1(y) + e^{-x} f_2(y+x)$		
16.	Solution $z = e^x f_1(y) + e^{-x} f_2(y + x)$ Solve $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial x} = 0$.	BTL -3	Applying
10.	Solution: A.E: D[D-D'+1] = 0	212 0	1 - 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	h=0, h=k-1 $z = f_1(y) + e^{-x}f_2(y+x)$ Solve (D ⁴ - D ⁴)z = 0. Solution: A.F.: m ⁴ -1=0, m=+1, +i.		
17.	Solve $(D^4 - D^{'4})z = 0$.	BTL -3	Applying
17.	Solution: A.E: m^4 -1=0, $m=\pm 1, \pm i$.		
	$Z=C.F=f_1(y+x)+f_2(y-x)+f_3(y+ix)+f_4(y-ix).$		
18.	Solve $(D^2 - DD' + D' - 1)Z = 0$.	BTL -3	Applying
	Solution: The given equation can be written as		
	(D-1)(D-D'+1)Z = O		
	$z = e^{x} f_{1}(y) + e^{-x} f_{2}(y + x)$		
19.	Solve $xdx + ydy = z$.	BTL -3	Applying

Solution The subsidiary equation is $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$		
$\frac{dx}{x} = \frac{dy}{y} \Rightarrow \log x = \log y + \log u$		
$u = \frac{x}{y} \text{ Similarly } v = \frac{x}{z}.$		
Form the p.d.e. by eliminating the arbitrary constants from $z = ax + by + ab$	BTL -3	Applying
Solution: $z = ax + by + ab$		
p = a & q=b		
The required equation $z = px+qy+pq$.		

	PART – B		
1.(a)	Find the PDE of all planes which are at a constant distance 'k' units from the origin.	BTL -4	Analyzing
1. (b)	Find the singular integral of $z = px + qy + 1 + p^2 + q^2$	BTL -2	Understandi ng
2. (a)	Form the partial differential equation by eliminating arbitrary function Φ from $\Phi(x^2 + y^2 + z^2, ax + by + cz) = 0$	BTL -4	Analyzing
2.(b)	Find the singular integral of $z = px + qy + p^2 + pq + q^2$	BTL -2	Understandi ng
3. (a)	Form the partial differential equation by eliminating arbitrary functions f and g from $z = x f(x/y) + y g(x)$	BTL -4	Analyzing
3.(b)	Find the singular integral of $z = px + qy + \sqrt{1 + p^2 + q^2}.$	BTL -3	Applying
4. (a)	Solve (D -7DD' -6D')z=sin(x+2y).	BTL -3	Applying
4.(b)	Form the partial differential equation by eliminating arbitrary function f and g from the relation $z = xf(x+t) + g(x+t)$	BTL -4	Analyzing
5. (a)	Solve $(D^2-2DD')z=x^3y+e^{2x-y}$.	BTL -3	Applying
5.(b)	Solve $x(y-z)p+y(z-x)q=z(x-y)$.	BTL -3	Applying
6. (a)	Find the singular integral of px+qy+p²-q²	BTL -2	Understandi ng
6.(b)	Find the general solution of $z = px + qy + p^2 + pq + q^2$.	BTL -3	Applying
7. (a)	Find the complete solution of $z^2(p^2+q^2+1)=1$	BTL -4	Analyzing

7. (b)	Find the general solution of $(D^2 + 2DD' + D'^2)z = 2\cos y - x\sin y$	BTL -2	Understanding
8. (a)	Find the general solution of $(D^2 + D^{\prime 2})z = x^2y^2$	BTL -2	Understanding
8.(b)	Find the complete solution of $p^2 + x^2 y^2 q^2 = x^2 z^2$	BTL -2	Understanding
9. (a)	Solve $(D^2 - 3DD' + 2D'^2)$ $z = (2 + 4x)e^{x+2y}$	BTL -3	Applying
9.(b)	Obtain the complete solution of $z = px+qy+p^2-q^2$	BTL -2	Understanding
10.(a)	Solve $x(y^2 - z^2) p + y(z^2 - x^2) q = z(x^2 - y^2)$	BTL -3	Applying
10.(b)	Solve $(D^2 - 3DD' + 2D'^2)z = \sin(x + 5y)$	BTL -3	Applying
11(a)	Solve the Lagrange's equation $(x + 2z) p + (2xz - y)q = x^2 + y$	BTL -3	Applying
11(b)	Solve $(D^2 - DD' - 2D'^2)z = 2x + 3y + e^{2x+4y}$	BTL -3	Applying
12(a)	$Solve (D^2 + DD' - 6D'^2)z = y \cos x$	BTL -3	Applying
12(b)	Solve the partial differential equation $(x^2 - yz)p + (y^2 - xz)q = z^2 - xy$	BTL -3	Applying
13(a)	Solve ($D^2 - DD' - 20D'^2$) $z = e^{5s+y} + \sin(4x - y)$.	BTL -3	Applying
13(b)	Solve $(2D^2 - DD' - D'^2 + 6D + 3D')z = xe^{-y}$	BTL -3	Applying
14(a)	Solve $(D^2 - 2DD')z = x^3y + e^{2x-y}$	BTL -3	Applying
14(b)	Solve $(D^3 - 7DD^{12} - 6D^{13})z = \sin(x + 2y)$	BTL -3	Applying
15(a)	Form the PDE by eliminating the arbitrary function from the relation $z = y^2 + 2f(\frac{1}{x} + logy)$.	BTL -4	Analyzing
15(b)	Solve the Lagrange's equation $(x+2z)p+(2xz-y) = x + y$.	BTL -3	Applying
16(a)	Solve $x^2p^2 + y^2q^2 = z^2$.	BTL -3	Applying
16(b)	Solve $(D^2+DD^2-6D^2)z = y \cos x$	BTL -3	Applying

UNIT II - FOURIER SERIES: Dirichlet's conditions – General Fourier series – Odd and even functions
 Half range sine series – Half range cosine series – Complex form of Fourier series – Parseval's identity
 Harmonic analysis.

PART -A

Q.No	Question	n's omy el	Domain		
1.	State the Dirichlet's conditions for a function $f(x)$ to be expanded a Fourier series.	as BTL	-1	Remembering	
	Solution:				
	(i) f(x) is periodic, single valued and finite.				
	(ii) $f(x)$ has a finite number of discontinuities in any one period (iii) $f(x)$ has a finite number of maxima and minima.				
	(iv) $f(x)$ and $f'(x)$ are piecewise continuous.				
2.	Find the value of a_0 in the Fourier series expansion of $f(x)=e^x$ in	(0,2 BTL	-1	Remembering	
	π).		-	C	
	Solution: $a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{2\pi} e^x dx = 0.$				
	If $(\pi - x)^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{\cos nx}{n^2} in \ 0 < x < 2\pi$, then deduce that value	lue			
3.	of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.	BTL	-1	Remembering	
	Solution: Put $x=0$, $\sum_{n=1}^{\infty} \frac{1}{n^2} = 6$.				
1 .	Does $f(x) = \tan x$ posses a Fourier expansion?	BTL -2		Understanding	
_	Solution No since tanx has infinite number of infinite				
	discontinuous and not satisfying Dirichlet's condition.				
) .	Determine the value of a_n in the Fourier series expansion of	BTL -4		Evaluating	
1 -	$f(x) = x^3 \text{ in } (-\pi, \pi).$				
	Solution: $a_n = 0$ since $f(x)$ is an odd function				
D.	Find the constant term in the expansion of COS ² x as a Fourier	BTL -2		Understanding	
	series in the interval $(-\pi, \pi)$.	_ _		C	
	Solution: $a_0 = 1$				
<i>!</i>	If $f(x)$ is an odd function defined in $(-1, 1)$. What are the values of	BTL -2		Understanding	
	a_0 and a_n ?	_		_	
<u> </u>	Solution: $a_n = 0 = a_0$ If the function $f(x) = x$ in the interval $0 < x < 2$ then find the				
3.	If the function $I(x) = x$ in the interval $0 \times x \times 2$ then find the	RTL -2		Understanding	

constant term of the Fourier series expansion of the function f.

8.

Solution: $a_0 = 4 \pi$

Understanding

BTL -2

	Expand $f(x) = 1$ as a half range sine series in the interval $(0, \pi)$.		
9.	Solution: The sine series of $f(x)$ in $(0, \pi)$ is given by	BTL -4	Analyzing
	$f(x) = \sum_{n=1}^{\infty} b_n \sin nx$		
	where $b_n = \frac{2}{\pi} \int_0^{\pi} \sin nx dx = -\frac{2}{n\pi} [\cos nx]_0^{\pi} = 0$ if n is even		
	$=\frac{4}{n\pi}$ if n is odd		
	$f(x) = \sum_{n=odd}^{\infty} \frac{4}{n\pi} \sin nx = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)x}{(2n-1)}.$		
10.	Find the value of the Fourier Series for $f(x) = 0$ -c <x<0< td=""><th>BTL -3</th><td>Applying</td></x<0<>	BTL -3	Applying
	= 1 0 < x < c at x = 0	BIL -3	прртупід
	Solution: $f(x)$ at $x=0$ is a discontinuous point in the middle.		
	$f(x)$ at $x = 0 = \frac{f(0-) + f(0+)}{2}$		
	$f(0-) = \lim_{h \to 0} f(0-h) = \lim_{h \to 0} 0 = 0$		
	$h \rightarrow 0 \qquad h \rightarrow 0$		
	$f(0+) = \lim_{h \to 0} f(0+h) = \lim_{h \to 0} 1 = 1$		
	$h \rightarrow 0$ $h \rightarrow 0$		
	$f(x)$ at $x = 0 \rightarrow (0+1)/2 = 1/2 = 0.5$		
11.	What is meant by Harmonic Analysis?	BTL -4	Analyzing
	Solution: The process of finding Euler constant for a tabular		
12.	function is known as Harmonic Analysis. Find the constant term in the Fourier series corresponding to $f(x) = x^2 + 2x $	BTL -1	Remembering
12.	$\cos^2 x$ expressed in the interval $(-\pi,\pi)$.	DIL -I	Remembering
	Solution: Given $f(x) = \cos^2 x = \frac{1 + \cos 2x}{2}$		
	W.K.T $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$		
	To find $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2 x dx = \frac{2}{\pi} \int_{0}^{\pi} \frac{1 + \cos 2x}{2} dx = \frac{1}{\pi} \left[x + \frac{\sin 2x}{2} \right]_{0}^{\pi}$		
	$= \frac{1}{\pi} [(\pi + 0) - (0+0)] = 1.$		
13.	Define Root Mean Square (or) R.M.S value of a function f(x) over	BTL -3	Applying
	the interval (a,b) .		
	Solution: The root mean square value of $f(x)$ over the interval (a,b) is defined as		
<u> </u>			

	$\int_{a}^{b} [f(x)]^{2} dx$		
	R.M.S. $= \sqrt{\frac{\int_a^b [f(x)]^2 dx}{b-a}}.$		
14.	Find the root mean square value of the function $f(x) = x$ in the interval $(0,l)$.	BTL -1	Remembering
	Solution: The sine series of $f(x)$ in (a,b) is given by		
	R.M.S. $ = \sqrt{\frac{\int_{a}^{b} [f(x)]^{2} dx}{b-a}} = \sqrt{\frac{\int_{0}^{l} [x]^{2} dx}{l-0}} = \frac{l}{\sqrt{3}}. $		
	If $f(x) = 2x$ in the interval (0,4), then find the value of a_2 in the Fourier series expansion.	BTL -5	Evaluating
	Solution: $a_2 = \frac{2}{4} \int_0^4 2x \cos[\pi x] dx = 0.$		
16.	To which value, the half range sine series corresponding to $f(x) = x^2$ expressed in the interval (0,5) converges at $x = 5$?. Solution: $x = 2$ is a point of discontinuity in the extremum.	BTL -4	Analyzing
	$\therefore [f(x)]_{x=5} = \frac{f(0) + f(5)}{2} = \frac{[0] + [25]}{2} = \frac{25}{2}.$		
17	If the Fourier Series corresponding to $f(x) = x$ in the interval $(0, 2\pi)$	DEL 4	Analyzina
	is $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ without finding the values of	BTL -4	Analyzing
	$a_{0, a_{n}}$, b_{n} find the value of $\frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2})$.		
	Solution: By Parseval's Theorem $\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_0^{2\Pi} [f(x)]^2 dx = \frac{1}{\pi} \int_0^{2\Pi} x^2 dx = \frac{1}{\pi} \left[\frac{x^3}{3} \right]_0^{2\Pi}$		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
18.	Obtain the first term of the Fourier series for the function $f(x) = x^2$,	BTL -1	Remembering
	$\pi < x < \pi$. <u>Solution:</u> Given $f(x) = x^2$, is an even function in $-\pi < x < \pi$. Therefore,		
	$a_o = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2}{\pi} \left[\frac{x^3}{3} \right]_0^{\pi} = \frac{2}{3} \pi^2.$		
19.	Find the co-efficient b_n of the Fourier series for the function $f(x) = x\sin x$ in (-2, 2).	BTL -4	Analyzing
	Solution: xsinx is an even function in $(-2,2)$. Therefore $b_n = 0$.		

20.	Find the sum of the Fourier Series for	BTL -3	Applying
	f(x) = x 0 < x < 1		
	$= 2 1 \le x \le 2 at x = 1.$		
	Solution: $f(x)$ at $x=1$ is a discontinuous point in the middle.		
	$f(x)$ at $x = 1 = \frac{f(1-) + f(1+)}{2}$		
	$\frac{1(x) \text{ at } x = 1 = \frac{1}{2}$		
	$f(1-) = \lim_{h \to 0} f(1-h) = \lim_{h \to 0} 1 - h = 1$		
	$h \rightarrow 0$ $h \rightarrow 0$		
	$f(1+) = \lim_{h \to 0} f(1+h) = \lim_{h \to 0} 2 = 2$		
	$h \rightarrow 0$ $h \rightarrow 0$		
	$f(x)$ at $x = 1 \rightarrow (1+2)/2 = 3/2 = 1.5$		
1	D. D. D. D.	·	

PART – B

1.(a)	Obtain the Fourier's series of the function $f(x) = \begin{cases} x & \text{for} 0 < x < \pi \\ 2\pi - x & \text{for} \pi < x < 2\pi \end{cases}$ Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$	BTL -1	Remembering
1.(b)	Find the Fourier's series of $f(x) = x $ in $-\pi < x < \pi$ And deduce that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$	BTL -1	Remembering
2.(a)	Find the Fourier's series expansion of period $2l$ for $f(x) = (l-x)^2$ in the range $(0,2l)$. Hence deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$	BTL -2	Understanding
2.(b)	Find the Fourier series of periodicity 2π for $f(x) = x^2$ in $-\pi \le x \le \pi$. Hence deduce that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$.	BTL -2	Understanding
3.(a)	Find the Fourier series upto second harmonic for the following data:	BTL -1	Remembering

	Find t	he Fourier	series of						
3.(b)		f(x) =	$2x - x^2$ in	n the interv	al 0 < x < 2	2		BTL -1	Remembering
4. (a)	Obtair	n the half	range cos	ine series o	of the funct	ion		DEL 4	Analyzina
		(r in ((l)					BTL -4	Analyzing
	f(x)	$= \begin{cases} x & in \\ l - x \left(\frac{l}{2} \right) \end{cases}$							
	$\int (\lambda)^{-1}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	· · · ·						
		(2	2")						
	Find	the half r	ange sine	series of th	ne function	f(x) = x(x)	$(\pi - x)$ in	1	
4. (b)		the inte	rval (0 , J	I) .				BTL -3	Applying
4. (<i>D</i>)								BIL -3	rippijiig
5.(a)				eries for th	e function				
	f(x)	$= \sin x i$	$n-\pi$ X	•				BTL -4	Analyzing
5.(b)	Find	the comp	lex form	of the Four	ier series o	$f f(x) = e^{-ax}$	in (-l,l)	BTL -1	Remembering
C1 (2)								DIL -I	g
6. (a)	Find t	he Fourier	series fo	f(x) = x	$\sin x in (-$	(π,π) .		DEL 4	Damamharina
								BTL -2	Remembering
	Find t	he Fourier	series ex	pansion of	f(x) = x +	$-x^2 - 2 \le x$	≤ 2 .		
6.(b)				1	<i>J</i> (*)			BTL -2	Remembering
7.(a)	Find t	he Fourier	series fo	$f(x) = \begin{cases} x \\ y \end{cases}$	$x = (0, \pi/2)$	2)			Analyzing
	i ilia t	ne i ouriei	scries 10	$\int \int (x) dx dx$	$\tau - x (\pi /$	$2,2\pi$).		BTL -4	
7.(b)	Fi	nd the Fou	rier serie	s of f(x) =	$x + x^2$ in (-	l. 1) with pe	eriod		
` ,	Find the Fourier series of $f(x) = x + x^2$ in (-1, 1) with period 21.							BTL -3	Applying
	Find the Fourier series as far as the second harmonic to represent								
	the function $f(x)$ with period 6, given in the following table.								
0.(u)	X	0	1	2	3	4	5	BTL -4	Analyzing
	f(x)	9	18	24	28	26	20		
		•	•				•		

8.(b)	Find the co	omplex	form of	the Fo	urier ser	ies of fo	$(x)=e^{-x}$	in	BTL -2	Remembering
9.(a)	Find the half $f(x) = x(x)$	U					$\frac{1}{3^4} + \dots =$	$\frac{\pi^4}{90}$	BTL -2	Remembering
9.(b)	Obtain the F $f(x) = x ,$ (M/J 2012)			-			$\frac{\pi}{\left(1\right)^{2}} = \frac{\pi}{8}$	3	BTL -3	Applying
10.(a)	Find the h	nalf ranş	ge sine se	eries of	f(x) = lx	-x in (0,	l))		BTL -1	Remembering
10.(b)	Obtain the						= x in () <x<4< td=""><td>BTL -1</td><td>Remembering</td></x<4<>	BTL -1	Remembering
11.(a)	By using $f(x) = x$ in	Cosine $0 < x$	series sh $< \pi$	ow that	$\frac{1}{1^4} + \frac{1}{2^4}$	$+\frac{1}{3^4}+$	$ = \frac{\pi^4}{96}$	for	BTL -4	Analyzing
11.(b)	Find the lithe function	Fourier	cosine se	-		harmoni 3	c to rep	resent 5	BTL -4	Analyzing
12.(a)	Show that $f(x)=e^{ax}$	t the co		_					BTL -1	Remembering
12.(b)	$f(x)=e^{-x}$ in -1 <x<1.< td=""><td>BTL -4</td><td>Analyzing</td></x<1.<>						BTL -4	Analyzing		
13.	the follo		rst 3 harn ata	nonics (л ше го	ulici ol	I(X) IIO	111	BTL -4	Analyzing
			1.3 150 2.16 180 1.25 210		1.76 2 330 1.8 360					

14.(a)	Find the complex form of the Fourier series of $f(x) = e^{-S} \text{ in } -1 < x < 1.$							BTL -4	Analyzing	
14.(b)		Find the Fourier series up to the second harmonic from the following table.							BTL -4	Analyzin g
		X	0	1	2	3	4	5		
		f(x)	9	18	24	28	26	20		

UNIT - III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Solution of one dimensional wave equation-One dimensional heat equation-Steady state solution of two dimensional heat equation-Fourier series solutions in Cartesian coordinates .

Textbook: Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi, 2012.

PART - A

Q.No	Questions	<mark>BT</mark> Level	Competence
1	What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation. Solution: The correct solution of one dimensional wave equation is of periodic in nature. But the solution of heat equation is not periodic in nature.	BTL-4	Analyzing
2	In steady state conditions derive the solution of one dimensional heat flow equations. [Nov / Dec 2005] Solution: one dimensional heat flow equation is $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} \dots (1)$ When the steady state conditions exists, put $\frac{\partial u}{\partial t} = 0$ Then (1) becomes, $\frac{\partial^2 u}{\partial x^2} = 0$. Solving, we get $u(x) = ax + b$. a and b are arbitrary constants.	BTL-2	Understanding

3	What are the possible solution of one dimensional wave equation. Solution: The possible solutions are (i) $y(x,t)=(A_1e^{px}+A_2e^{-px})(A_3e^{pat}+A_4e^{-pat})$ (ii) $y(x,t)=(B_1\cos px+B_2\sin px)(B_3\cos pat+B_4\sin pat)$ (iii)	BTL-1	Remembering
4	$y(x,t)=(C_1x+C_2)(C_3t+C_4)$.	DTI 4	D
4	Classify the P.D.E $3u_{xx} + 4u_{yy} + 3u_y - 2u_x = 0$.	BTL-1	Remembering
	Solution: $B^2 - 4AC = 16 - 4(3)(0) = 16 > 0$. It is hyperbolic.		
5	The ends A and B of a rod of length 10cm long have their	BTL-1	Remembering
	temperatures kept at $20^{\circ} C and 70^{\circ} C$. Find the Steady state temperature distribution of the rod. Solution: The initial temperature distribution is $u(x,0) = \frac{b-a}{l}x + a$. Here $a = 20^{\circ} C, b = 70^{\circ} C, l = 10 cm$. $\therefore u(x,t) = \frac{70-20}{10}x + 20 = 5x + 20.0 < x < 10.$		
6	Classify the PDE $\frac{\partial^{2} u}{\partial x^{2}} + 4 \frac{\partial^{2} u}{\partial x \partial y} + 4 \frac{\partial^{2} u}{\partial y^{2}} - 12 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + 7u = x^{2} + y^{2}.$ Solution: The given PDE is $u_{xx} + 4u_{xy} + 4u_{yy} - 12u_{x} + u_{y} + 7u = x^{2} + y^{2}. A=1; B=4; C=4.$ $B^{2} - 4AC = 16 - 16 = 0.$ $\therefore \text{ The given PDE is parabolic.}$	BTL-3	Applying
7	Write down the one dimensional heat equation. Solution: The one dimensional heat equation is $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}.$	BTL-1	Remembering
8	Write down the possible solutions of one dimensional heat flow equation. Solution: The various possible solutions of one dimensional heat equation are (i)u(x,t)=($Ae^{px} + Be^{-px}$) $e^{\alpha^2 p^2 t}$ (ii) ($A\cos px + B\sin px$) $e^{-\alpha^2 p^2 t}$ (iii) u(x,t)=($Ax + B$).	BTL-1	Remembering

9	Write the one dimensional wave equation with initial and boundary conditions in which the initial position of the string is $f(x)$ and the initial velocity imparted at each point is $g(x)$. Solution: The wave equation is $\frac{\partial^2 y}{\partial t^2} = \alpha^2 \frac{\partial^2 y}{\partial x^2}$. The boundary conditions are (i) $y(0,t)=0, \forall t>0$ (ii) $y(0,t)=0, \forall t>0$ (iii) $\frac{\partial y}{\partial t}(x,0)=g(x), 0< x< l$. (iv) $y(x,0)=f(x), 0< x< l$.	BTL-3	Applying
10	Classify the partial differential equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ Solution: Given $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ $\alpha^2 \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$ $Here A = \alpha^2; B = 0; C = 0.$ $\therefore B^2 - 4AC = 0 - 4(\alpha^2)(0) = 0.$	BTL-1	Remembering
11	State the two dimensional Laplace equation? Solution: $U_{xx} + U_{yy} = 0$	BTL-1	Remembering
12	In an one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ what does the constant stands for ? Solution: α^2 is called the diffusivity of the material of the body through which the heat flows. If ρ be the density, α the specific heat and k thermal conductivity of the material, we have the relation $k/\rho\alpha = 2$.	BTL-1	Remembering
13	What is the basic difference between the solutions of one dimensional wave equation and one dimensional heat equation. Solution: Solution of the one dimensional wave equation is of periodic in nature. But Solution of the one dimensional heat equation is not of periodic in nature.	BTL-1	Remembering

14	In the wave equation $\frac{\partial^2 y}{\partial t^2} = \alpha^2 \frac{\partial^2 y}{\partial x^2}$, What does α^2 stands for ? Solution: $\alpha^2 = \frac{Tension}{MassperUnitlength}$	BTL-1	Remembering
15	In 2D heat equation or Laplace equation ,What is the basic assumption? Solution: When the heat flow is along curves instead of straight lines,the curves lying in parallel planes the flow is called two dimensional	BTL-4	Analyzing
16	Define steady state condition on heat flow. Solution: Steady state condition in heat flow means that the temp at any point in the body does not vary with time. That is, it is independent of t, the time.	BTL-1	Remembering
17	Write the solution of one dimensional heat flow equation , when the time derivative is absent.	BTL-2	Understanding
18	If the solution of one dimensional heat flow equation depends neither on Fourier cosine series nor on Fourier sine series , what would have been the nature of the end conditions? Solution: One end should be thermally insulated and the other end is at zero temperature.	BTL-1	Remembering
19	State any two laws which are assumed to derive one dimensional heat equation? Solution: (i)The sides of the bar are insulated so that the loss or gain of heat from the sides by conduction or radiation is negligible. (ii)The same amount of heat is applied at all points of the face	BTL-1	Remembering
20	What are the assumptions made before deriving the one dimensional heat equation? Solution: (i)Heat flows from a higher to lower temperature. (ii)The amount of heat required to produce a given temperature change in a body is proportional to the mass of the body and to the temperature change. (iii)The rate at which heat flows through an area is	BTL-1	Remembering

	proportional to the area and to the temperature gradient normal to the area.		
21	Write down the two dimensional heat equation both in		
21	transient and steady states.		
	Solution: Transient state: $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$	BTL-2	Understanding
	Steady state: : $U_{xx} + U_{yy} = 0$		
	PART-B		
1	A uniform string is stretched and fastened to two points $'l'$ apart. Motion is started by displacing the string into the form of the curve $y = kx(l-x)$ and then releasing it from this position at time $t=0$. Find the displacement of the point of the string at a distance x from one end at time t .	BTL-4	Analyzing
2	A tightly stretched string of length l has its ends fastened at $x = 0$ and $x = l$. The midpoint of the string is then taken to a height h and then released from rest in that position. Obtain an expression for the displacement of the string at any subsequent time.	BTL-4	Analyzing
3	A tightly stretched string of length $2l$ is fastened at both ends. The midpoint of the string is displaced by a distance 'b' transversely and the string is released from rest in this position. (Find the lateral displacement of a point of the string at time 't' from the instant of release) Find an expression for the transverse displacement of the string at any time during the subsequent motion	BTL-4	Analyzing
4	A tightly stretched string of length 1 is initially at rest in equilibrium position and each point of it is given the velocity $\left(\frac{\partial y}{\partial y}\right)_{t=0} = y_0 \sin^3\left(\frac{\pi x}{l}\right)$. Find the displacement at any time 't'.	BTL-5	Analyzing
5	A string is stretched between two fixed points at a distance	BTL-2	Understanding
	2l apart and the points of the string are given initial]	

	velocities v where $v = \begin{cases} \frac{cx}{l} & 0 < x < l \\ \frac{c}{l}(2l - x) & l < x < 2l \end{cases}$ distance from one end point. Find the displacement of the string at any subsequent time		
6	A rod 30cm long has its ends A and B kept at $20^{\circ}c$ and $80^{\circ}c$ respectively until steady state conditions prevails. The temperature at each end is then suddenely reduced to $0^{\circ}c$ and kept so. Find the resulting temperature function $u(x,t)$ taking $x = 0$ at A.(Nov./Dec. 2009).	BTL-2	Understanding
7	A rod of length 1 has its ends A and B kept at $0^{\circ}c$ and $120^{\circ}c$ respectively until steady state conditions prevail. If the temperature at B is reduced to $0^{\circ}c$ and so while that of A is maintained, find the temperature distribution of the rod.	BTL-4	Analyzing
8	An infinitely long rectangular plate with insulated surface is 10 cm wide. The two long edges and one short edge are kept at zero temperature, while the other short edge $x = 0$ is kept at temperature given by $u = \begin{cases} 20y, & 0 \le y \le 5 \\ 20(10 - y), & 5 \le y \le 10 \end{cases}$	BTL-4	Analyzing
9	A string is stretched and fastened to two points \boldsymbol{l} apart. Motion is started by displacing the string into the form $y = k(\boldsymbol{l}x-x^2)$ from which it is released at time $t=0$. Find the displacement of any point on the string at a distance x from one end at time t.	BTL-4	Analyzing
10	A square plate is bounded by the lines $x = 0$, $x = a$, $y = 0$ and $y = b$. Its surfaces are insulated and the temperature along $y = b$ is kept at 100° C. Find the steady-state temperature at any point in the plate.	BTL-4	Analyzing
11	A tightly stretched string with fixed end points $x = 0$ and $x = 1$ is initially in a position given by $y(x,0) = y_0 \sin^3 \left(\frac{\pi x}{l}\right)$. Find	BTL-2	Understanding

the	displacement	at	any	time't'.		

UNIT - IV FOURIER TRANSFORM

Fourier integral theorem (without proof) – Fourier transform pair –Sine and Cosine transforms-Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

Textbook: Grewal. B.S., and Grewal. J.S., "Numerical Methods in Engineering and Science", 9th Edition, Khanna Publishers, New Delhi, 2007.

PART - A

	111111 11		
CO Mappir	ng: C214.2		
Q.No	Questions	BT	Competence
		Level	
1	Prove that $F[f(x - a)] = e^{ias} F(s)$	BTL-4	Analyzing
	<u>Proof:</u>		
	$F(f(x)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{ixx} dx$		
	$F(f(x-a)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-a)e^{isx} dx, put \ t = x-a;$	dt = dx	
	$x \to \pm \infty =$	$\Rightarrow t \rightarrow \pm c$	∞
	$F(f(x-a)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{is(t+a)}dt = e^{isa} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{is(t+a)}dt$	$e^{ist}dt=e^{i}$	$^{sa}F(s).$
2	Prove that $F(f(x)\cos ax) = \frac{1}{2}[F(s+a)+F(s-a)].$	BTL-1	Remembering
	Proof:		

	$F(f(x)\cos ax) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)\cos ax e^{ixx} dx$ $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \frac{e^{iax} + e^{-iax}}{2} e^{ixx} dx$ $= \frac{1}{2} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{i(s+a)x} dx + \frac{1}{\sqrt{2\pi}} $	$e^{i(s-a)x}dx$	
3	Prove that $F_c(f(x)\sin ax) = \frac{1}{2}[F_s(s+a) + F_s(s-a)]$ Proof: $F_c(f(x)\cos ax) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x)\sin ax \cos sx dx$ $= \frac{1}{2}\sqrt{\frac{2}{\pi}} \int_0^\infty f(x)(\sin(s+a)x + \sin(s-a)x) dx$ $= \frac{1}{2}\left(\sqrt{\frac{2}{\pi}} \int_{-\infty}^\infty f(x)\sin(s+a)x dx + \sqrt{\frac{2}{\pi}} \int_{-\infty}^\infty f(x)\cos(s+a)x dx + \sqrt{\frac{2}{\pi}} \int_{-\infty}^\infty f(x)\cos(s+a)x dx + \sqrt{\frac{2}{\pi}} \int_{-\infty}^\infty f(x)\cos$	BTL-2 $in(s-a)$	Understanding
4	Find the Fourier sine transform of e-x, x > 0. Solution: $F_{s}(f(x)) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin sx dx = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-x} \sin sx dx$ $= \sqrt{\frac{2}{\pi}} \left[\frac{e^{-x}}{1+s^{2}} \left(-\sin sx - s\cos sx \right) \right]_{0}^{\infty} = \sqrt{\frac{2}{\pi}}$	$\frac{s}{1+s^2}$	Analyzing
5	Write the Fourier transform pair. <u>Proof:</u>	BTL-1	Remembering

	$F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{isx} dx$ $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s)e^{-isx} ds$		
	$\sqrt{2\pi}$		
6	Find the Fourier sine transform of $\frac{1}{2}$.	BTL-2	Understanding
	The die Fourier size dansform of $\frac{1}{x}$.		
	Solution:		
	$F_{s}(f(x)) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin sx dx = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{1}{x} \sin sx dx$		
	$put sx = \theta; sdx = d\theta; \qquad \qquad = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\sin \theta}{\theta} d\theta =$	$\sqrt{\frac{2}{\pi}} \frac{\pi}{2} =$	$=\sqrt{\frac{\pi}{2}}$.
7	Find the Fourier cosine transform of $f(ax)$.	BTL-2	Understanding
	Solution:		
	$F_{c}(f(ax)) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(ax) \cos sx dx$		
	$put \ t = ax; \ dt = adx$		
	$= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(t) \cos\left(\frac{st}{a}\right) \frac{dt}{a} = \frac{1}{a} F_{c}\left(\frac{s}{a}\right).$		
8	Find the Fourier Cosine transform of e^{-ax} .	BTL-1	Remembering
	Solution:		
	$F_{c}[e^{-ax}] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-ax} \cos sx dx = \sqrt{\frac{2}{\pi}} \left[\frac{e^{-ax}}{a^{2} + s^{2}} (-a \cos sx + a $	sx + ss	$[sx]_0^\infty$
	$=\sqrt{\frac{2}{\pi}}\frac{a}{a^2+s^2}.$		
9	Find the Fourier transform of $f(x) = \begin{cases} e^{ikx}, & a < x < b \\ 0, & x < a, x > b \end{cases}$	BTL-1	Remembering
	Solution:		

	$\Gamma[f(x)] \qquad 1 \qquad b \qquad is a = 1 \qquad b \qquad i a = 1 \qquad 1$	$\int e^{i(s+k)}$	x = b
	$F[f(x)] = \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{ikx} e^{isx} dx = \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{i(s+k)x} dx = \frac{1}{\sqrt{2\pi}}$	$\overline{i(s+)}$	$k)$ \rfloor_a
	$=\frac{1}{\sqrt{2\pi}}\left[\frac{e^{i(s+k)b}-e^{i(s+k)a}}{i(s+k)}\right].$		
10	State convolution theorem. <u>Solution</u> : If $F(s)$ and $G(s)$ are fourier transforms of $f(x)$ and $g(x)$ respectively then the fourier transform of the convolutions of $f(x)$ and $g(x)$ is the product of their fourier transform.	BTL-1	Remembering
11	Write the Fourier cosine transform pair? $F_c(s) = \frac{2}{\sqrt{\pi}} \int_0^\infty f(x) \cos sx dx$ Solution: $f(x) = \frac{\sqrt{2}}{\sqrt{\pi}} \int_0^\infty F_c(f(x) \cos sx ds)$	BTL-2	Understanding
12	Write Fourier sine transform and its inversion formula? $F_s(s) = \frac{2}{\sqrt{\pi}} \int_0^\infty f(x) \sin sx dx$ Solution: $f(x) = \frac{\sqrt{2}}{\sqrt{\pi}} \int_0^\infty F_s(f(x) \sin sx ds)$	BTL-4	Analyzing
13	State the modulation theorem in Fourier transform . Solution : If $F(s)$ is the Fourier transform of $f(x)$, then $F[f(x)\cos ax] = 1/2 [F(s+a) + F(s-a).$	BTL-4	Analyzing
14	State the Parsevals identity on Fourier transform. Solution: If F(s) is the Fourier transform of f(x), then $\int_{-\infty}^{\infty} f(x) ^2 dx = \int_{-\infty}^{\infty} F(s) ^2 ds$	BTL-4	Analyzing
15	State Fourier Integral theorem . Solution : If $f(x)$ is piecewise continuously differentiable & absolutely integrable in $(-\infty, \infty)$ then $f(x) = \int_{-\infty-\infty}^{\infty} f(t)e^{is(x-t)}dtds$ This is known as Fourier integral theorem	BTL-1	Remembering
16	Define self-reciprocal with respect to Fourier Transform. Solution: If a transformation of a function $f(x)$ is equal to $f(s)$ then the function $f(x)$ is called self-reciprocal	BTL-4	Analyzing

PART - B				
1	Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, & x \le a \\ 0, & x \le a \end{cases}$ Hence evaluate $\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos\left(\frac{s}{2}\right) dx.$	BTL-4	A∱anJ≱rig g	
2	Find the Fourier cosine transform of $f(x) = e^{-ax}$, $a > 0$ and $g(x) = e^{-bx}$, $b > 0$. Hence evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 + 1)(x^2 + 9)}$.	BTL-4	Analyzing	
3	Find the Fourier Transform of f(x) given by $f(x) = \begin{cases} a - x , & x \le a \\ 0, & x \ne a \end{cases}$. Hence show that $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt = \frac{\pi}{2} \text{ and } \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt = \frac{\pi}{3}.$	BTL-4	Analyzing	
4	Find the Fourier transform of $f(x) = \begin{cases} 1, & \text{for } x \le a \\ 0, & \text{for } x \le a \end{cases} \text{ and using Parseval's }$ identity prove that $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt = \frac{\pi}{2}.$	BTL-4	Analyzing	
5	Find the Fourier sine and cosine transform of e^{-ax} and hence find the Fourier sine transform of $\frac{x}{x^2 + a^2}$ and Fourier cosine transform of $\frac{1}{x^2 + a^2}$.	BTL-4	Analyzing	
6	Find the Fourier cosine transform of e^{-x^2} .	BTL-4	Analyzing	
7	Prove that $\frac{1}{\sqrt{x}}$ is self reciprocal under Fourier sine	BTL-4	Analyzing	

	and cosine transforms.			
8	Evaluate $\int_{0}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}$ using Fourier	BTL-4	Analyzing	
9	By finding the Fourier cosine transform of $f(x) = e^{-ax} (a \phi 0)$ and using Parseval's identity for cosine transform evaluate $\int_{0}^{\infty} \frac{dx}{(a^{2} + x^{2})^{2}}.$	BTL-3	Applying	
10	If $F_c(s)$ and $G_c(s)$ are the Fourier cosine transform of $f(x)$ and $g(x)$ respectively, then prove that $\int_0^\infty f(x)g(x)dx = \int_0^\infty F_c(s)G_c(s)ds.$	BTL-3	Applying	
11.	Find the Fourier sine transform of $f(x) = \begin{cases} x, & 0 \pi x \pi 1 \\ 2 - x, & 1 \pi x \pi 2 \\ 0, & x \neq 2. \end{cases}$	BTL-4	Analyzing	
12.	If $F_c(f(x)) = F_c(s)$, prove that $F_c(F_c(x)) = f(s)$.	BTL-3	Applying	
13	Use transform method to evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$	BTL-3	Applying	

UNIT-V Z-TRANSFORMS AND DIFFERENCE EQUATIONS

Z-transforms - Elementary properties - Inverse Z-transform - Convolution theorem -Formation of difference equations - Solution of difference equations using Z-transform.

	PART – A				
O Mapping:					
Q.No	Questions	BT Level	Competence	PC	
1.	Define the unit step sequence. Write its Z- transform. Soln: It is defined as $U(k): \{1,1,1,\dots, \} = \begin{cases} 1, & k > 0 \\ 0, & k < 0 \end{cases}$	BTL -1	Remembering		

	Hence $Z[u(k)] = 1 + 1/z + 1/z^2 + + = \frac{1}{1 - 1/z} =$		
	$\frac{z}{z-1}$		
2.	Form a difference equation by eliminating the arbitrary constant A from $y_n = A.3^n$ Soln: $y_n = A.3^n$, $y_{n+1} = A.3^{n+1} = 3A$, $y_n = 3y_n$ Hence $y_{n+1} - 3y_n$	BTL -1	Understanding
3.	Find the Z transform of $\sin \frac{nn\pi}{2}$ Soln: We know that , $z[\sin n\theta] = \frac{Z \sin n\theta}{z^2 - 2z\cos\theta + 1}$ Put $\theta = \pi/2$ $z[\sin \frac{n\pi}{2}] = \frac{z \sin n\pi/2}{z^2 - \frac{2z\cos\pi}{2} + 1} = \frac{z}{z^2 + 1}$	BTL -5	Understanding
4.	Find $Z(n)$. Soln: $Z(n) = \frac{z}{(z-1)2}$	BTL -1	Remembering
5.	Express $Z\{ f(n+1) \}$ in terms of $f(z)$ Soln: $Z\{ f(n+1) \} = zf(z) - zf(0)$	BTL -1	Remembering
6.	Find the value of $z\{f(n)\}$ when $f(n) = na^n$ Soln: $z(na^n) = \frac{az}{(z-a)}$	BTL -1	Understanding
7.	Find $z[e^{-iat}]$ using Z transform. Soln. By shifting property , $z[e^{-iat}] = ze^{iaT}/ze^{iaT}$ -1	BTL -1	Remembering
8.	Find the Z transform of $a^n/n!$. Soln: $z[a^n/n!] = e^{a/z}$ (By definition)	BTL -1	Understanding
9.	State initial value theorem in Z-transform. Solution : If $f(t) = F(z)$ then $\lim_{t\to 0} f(t) = \lim_{z\to \infty} F(z)$.	BTL -1	Understanding
10.	State final value theorem in Z-transform. Solution : If $f(t) = F(z)$ then $\lim_{t\to\infty} f(t) = \lim_{z\to 0} F(z)$. State Euler formula.	BTL -1	Understanding
11.	State Convolution theorem on Z-transform. Solution: If $X(z)$ and $Y(z)$ are Z- transforms of $x(n)$ and $y(n)$ respectively then the Z- transform of the convolutions of $x(n)$ and $y(n)$ is the product of their Z- transform.	BTL -1	Understanding
12.	Define Z-transforms of f(t). Solution : Z-transform for discrete values of t : If f(t) is a	BTL -1	Understanding

	function defined for discrete values of t where t=nT, n=0,1,2,T being the sampling period then $Z\{f(t)\} = F(Z) = \sum_{n=0}^{\infty} f(nT)Z^{-n}$		
13.	Define Z- transform of the sequence. Solution: Let $\{x(n)\}$ be a sequence defined for all integers then its Z-transform is defined to be $Z\{x(n)\} = X(Z) = \sum_{n=0}^{\infty} x(n)Z^{-n}$ State first shifting theorem.	BTL -4	Analyzing
14.	State first shifting theorem. Solution : If $Z\{f(t)\} = F(Z)$ then $Z\{(e^{-at} f(t))\} = F(ze^{at})$	BTL -2	Remembering
15.	Find the Z-Transform of $\cos n\theta$ and $\sin n\theta$? Solution: $Z(\cos n\theta) = \frac{z(z - \cos \theta)}{(z - \cos \theta)^2 + \sin^2 \theta}$ $Z(\sin n\theta) = \frac{z \sin \theta}{(z - \cos \theta)^2 + \sin^2 \theta}$	BTL -2	Remembering
16.	Find the Z-transform of unit step sequence. Solution: $u(n) = 1$ for $n \ge 0$ u(n) = 0 for $n < 0$. Now $Z[u(n)] = \frac{z}{z-1}$	BTL -1	Remembering
17.	Find the Z-transform of unit sample sequence. Solution: $\delta(n) = 1$ for $n = 0$ $\delta(n) = 0$ for $n > 0$. Now $Z[\delta(n)] = 1$	BTL -1	Understanding
18.	Form a difference equation by eliminating arbitrary constant from $u_n = a.2^{n+1}$. Solution: Given, $u_n = a.2^{n+1}$ $u_{n+1} = a.2^{n+2}$ Eliminating the constant a, we get $u_n = 1$ $u_{n+1} = 0$ We get $2u_n - u_{n+1} = 0$	BTL -1	Understanding
19.	Form the difference equation from $y_n = a + b \cdot 3^n$ Solution: Given , $y_n = a + b \cdot 3^n$ $y_{n+1} = a + b \cdot 3^{n+1}$ $= a + 3b \cdot 3^n$ $y_{n+2} = a + b \cdot 3^{n+2}$ $= a + 9b \cdot 3^n$	BTL -1	Understanding

	Eliminating a and b we get, $y_n = 1 - 1$ $y_{n+1} = 1 - 3 = 0$ $y_{n+2} = 1 - 9$ We get $y_{n+2} - 4y_{n+1} + 3y_n = 0$ Find $Z[\frac{a^n}{n!}]$			
20.	Solution: $Z\left[\frac{a^n}{n!}\right] = e^{\frac{a}{z}}$	BTL-!	Understanding	
	PART-B			
1.	Find the Z-transform of $\cos n\theta$ and $\sin n\theta$. Hence deduce the Z-transform of $\cos (n + 1)\theta$ and $a^n \sin n\theta$	BTL -1	Remembering	
2	Use residue theorem find Z^{-1} $\left(z (z+1) (z-3)^3 \right)$	BTL -3	Applying	
3	Solve $y_{n+2} - 5y_{n+1} + 6y_n = 6^n$, $y_0 = 1$, $y_1 = 0$	BTL -1	Remembering	
4	Solve using Z-Transform $u_{n+2} + 6u_{n+1} + 9u_n = 2^n$; given $u_0 = u_1 = 0$	BTL -1	Remembering	
5	Using convolution theorem find the inverse Z transform of $\left(\frac{z}{z-4}\right)$ ³	BTL -2	Understanding	
6	Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$, $y_0 = 0$, $y_1 = 0$	BTL -1	Remembering	
7	Using convolution theorem find $Z^{-1}\left(\frac{z^2}{(z-4)(z-3)}\right)$	BTL -1	Remembering	
8	Fnd the inverse Z -transform of $\frac{Z^3-20Z}{(Z-2)^3(Z-4)}$	BTL -3	Applying	
9	Find $Z^{-1}\left(\frac{8z^2}{(2z-1)(4z+1)}\right)$	BTL -3	Applying	

10	State and Prove Convolution theorem	BTL -3	Applying	
11	Solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$, $y_0 = 0$, $y_1 = 0$	BTL -4	Analyzing	
12	Prove that $Z\left(\frac{1}{n}\right) = \log\left(\frac{z}{z-1}\right)$	BTL -3	Applying	
13	Using convolution theorem evaluate inverse Z-transform of $\left[\frac{z^2}{(z-1)(z-3)}\right]$	BTL -1	Remembering	